Adaptive Robust Variable Selection.

نویسندگان

  • Jianqing Fan
  • Yingying Fan
  • Emre Barut
چکیده

Heavy-tailed high-dimensional data are commonly encountered in various scientific fields and pose great challenges to modern statistical analysis. A natural procedure to address this problem is to use penalized quantile regression with weighted L1-penalty, called weighted robust Lasso (WR-Lasso), in which weights are introduced to ameliorate the bias problem induced by the L1-penalty. In the ultra-high dimensional setting, where the dimensionality can grow exponentially with the sample size, we investigate the model selection oracle property and establish the asymptotic normality of the WR-Lasso. We show that only mild conditions on the model error distribution are needed. Our theoretical results also reveal that adaptive choice of the weight vector is essential for the WR-Lasso to enjoy these nice asymptotic properties. To make the WR-Lasso practically feasible, we propose a two-step procedure, called adaptive robust Lasso (AR-Lasso), in which the weight vector in the second step is constructed based on the L1-penalized quantile regression estimate from the first step. This two-step procedure is justified theoretically to possess the oracle property and the asymptotic normality. Numerical studies demonstrate the favorable finite-sample performance of the AR-Lasso.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Regression through the Huber’s criterion and adaptive lasso penalty

The Huber’s Criterion is a useful method for robust regression. The adaptive least absolute shrinkage and selection operator (lasso) is a popular technique for simultaneous estimation and variable selection. The adaptive weights in the adaptive lasso allow to have the oracle properties. In this paper we propose to combine the Huber’s criterion and adaptive penalty as lasso. This regression tech...

متن کامل

A Robust Competitive Global Supply Chain Network Design under Disruption: The Case of Medical Device Industry

In this study, an optimization model is proposed to design a Global Supply Chain (GSC) for a medical device manufacturer under disruption in the presence of pre-existing competitors and price inelasticity of demand. Therefore, static competition between the distributors’ facilities to more efficiently gain a further share in market of Economic Cooperation Organization trade agreement (ECOTA) is...

متن کامل

Designing a Robust Control Scheme for Robotic Systems with an Adaptive Observer

This paper introduces a robust task-space control scheme for a robotic system with an adaptive observer. The proposed approach does not require the availability of the system states and an adaptive observer is developed to estimate the state variables. These estimated states are then used in the control scheme. First, the dynamic model of a robot is derived. Next, an observer-based robust contr...

متن کامل

Robust adaptive control of voltage saturated flexible joint robots with experimental evaluations

This paper is concerned with the problem of design and implementation a robust adaptive control strategy for flexible joint electrically driven robots (FJEDR), while considering to the constraints on the actuator voltage input. The control design procedure is based on function approximation technique, to avoid saturation besides being robust against both structured and unstructured uncertaintie...

متن کامل

Function Approximation Approach for Robust Adaptive Control of Flexible joint Robots

This paper is concerned with the problem of designing a robust adaptive controller for flexible joint robots (FJR). Under the assumption of weak joint elasticity, FJR is firstly modeled and converted into singular perturbation form. The control law consists of a FAT-based adaptive control strategy and a simple correction term. The first term of the controller is used to stability of the slow dy...

متن کامل

A Robust Feedforward Active Noise Control System with a Variable Step-Size FxLMS Algorithm: Designing a New Online Secondary Path Modelling Method

Several approaches have been introduced in literature for active noise control (ANC)systems. Since Filtered-x-Least Mean Square (FxLMS) algorithm appears to be the best choice as acontroller filter. Researchers tend to improve performance of ANC systems by enhancing andmodifying this algorithm. This paper proposes a new version of FxLMS algorithm. In many ANCapplications an online secondary pat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of statistics

دوره 42 1  شماره 

صفحات  -

تاریخ انتشار 2014